Myositis

Chamindra Konersman MD
Department of Neurosciences
UCSD, Rady, San Diego VA Health Systems
10/2/20
Overview

- **Myositis** = inflammation of the muscle
 - As evidenced by the presence of T/B cells on muscle biopsy
 - **Primary**—Immune-mediated
 - Dermatomyositis
 - Anti-synthetase syndrome
 - Immune-mediated necrotizing myopathy
 - HMG-CoA reductase
 - Overlap myositis—associated with SLE, Sjögren, RA, scleroderma
 - **Secondary**—Neurodegenerative; inflammation is a secondary feature
 - Inclusion-body myositis
Autoimmune myositis
Clinical-Common features

• Proximal muscle weakness
 • Shoulder and hip girdle muscles—deltoids, biceps, triceps, gluteus max/medius, quadriceps, hamstrings, iliopsoas
 • *How do they present?*
 • Difficulties walking, running, climbing stairs, rising from floor or chair
 • Difficulties washing/styling hair, doing overhead work
 • Neck flexor weakness
 • Advanced disease → diaphragmatic and bulbar (swallowing) weakness
 • Myalgia (not prominent symptom)

• All have normal to high CK
• Diagnostic workup similar – Clinical exam, CK, autoantibody, EMG, muscle biopsy, ±MRI of muscle, ±CT chest
• Muscle biopsy – shows necrosis, variable amount of inflammation (T helper cells, B cells), vascular abnormalities
Immune Mediated - Dermatomyositis

• Pathophysiology
 • Immune – **Interferon** overproduction; abundant **plasmacytoid** dendritic cells that induce T & B cells in pathological sections
 • Secretes autoantibodies → Complement activation/MAC → capillary damage → infarction
 • Genetic – genes induced by interferon are upregulated
 • Class 2 HLA alleles associated with DM
 • HLA-B08, HLA-DRB1*0301 associated with more severe disease
 • Environmental
 • Events that disrupt immune system; e.g. antecedent viral illness (preceding 6 months)

• Cascade reaction

Evidence for mechanisms contributing to juvenile dermatomyositis pathogenesis. pDC: plasmacytoid dendritic cell; c0: complement; Treg: regulatory T cell; IL: interleukin; MCP: monocyte chemoattractant protein; IFN: interferon; MHC: major histocompatibility complex; CXCL: Chemokine (C-X-C motif) ligand; MRP: myeloid-related protein; TLR: toll-like receptor; MAC: membrane attack complex; ICAM: intercellular adhesion molecule; VCAM: vascular cell adhesion molecule.

Dermatomyositis – Clinical

• Children & adults
• Subacute onset—manifest over weeks to months
• Muscle weakness + rash ± other organ involvement
• CK elevated – normal to high (few 100 to several 1000’s IU/L)
 • Why?
 • Due to muscle membrane damage and necrosis; via MHC-I mediated damage and MAC deposition
 • Does not always correlate with disease severity/response to medication
 • Caveat: AST/ALT also elevated. Surprised?
 • Practically: if CK elevated → can trend to monitor response to treatment
• Rash – may precede weakness by weeks to months
 • Photosensitive areas – extensor surfaces of joints (MCP, elbows, knees), anterior chest, posterior neck, face
 • Erythematous
 • Edematous
 • Occasionally pruritic
Dermatomyositis – Clinical

Heliotrope rash. Purple/violet discoloration over upper eyelids.

Malar rash.
May be associated with periorbital edema.

V sign. Erythematous skin changes in anterior neck.
Dermatomyositis – Clinical

Shawl sign. Erythema noted over posterior neck and upper back in the distribution of a shawl

Gottron sign. Scaling, erythematous changes over bony prominences—metacarpophalangeal joints but also proximal and distal interphalangeal joints. **Gottron papules** if raised and plaque-like

Dermatomyositis – Clinical

Mechanic’s hands. Rough, cracking appearance of the skin of the fingertips (especially in index and thumb, lateral aspects)

Telangiectasia hemorrhages (arrow). Present at the nailbeds (periungual abnormalities) with irregular thickened cuticles.

Dermatomyositis – Clinical

Alopecia. Focal patches and diffuse hair loss seen with erythematous eruptions over scalp. May be itching and scaling.

Calciosynthesis. Thick, linear, hyperpigmented, deep-seated nodules on medial thigh in juvenile DM. Calcium deposits within skin. More common in juvenile>adult DM.

Dermatomyositis – Clinical

Calcinosis. Calcium deposits eroding skin over the distal IPJ.

Severe skin ulceration. Pt with MDA-5 Autoantibodies

Dermatomyositis - Clinical

Other extramuscular manifestations:

• Cardiac – arrhythmias, cardiomyopathy, pericarditis, myocarditis, CHF

• Pulmonary – interstitial lung disease-DOE, nonproductive cough
 • Reticulonodular pattern or diffuse alveolar pattern with ground-glass appearance
 • Restrictive lung defect on PFTs; reduced diffusion capacity (DLCO)
 • Leading cause of death in DM

• GI—dysphagia, impaired gastric motility, aspiration pneumonia
 • Intestinal vasculopathy—ulceration, perforation, GI hemorrhage
 • Serious complication; juvenile>adult DM

• Rheum—large and small joint arthralgia
 • With or w/o underlying arthritis

• Malignancy – often adenocarcinomas; 2 years before or after muscle weakness/rash; reduced survival rate
Dermatomyositis - Clinical

C&D: ILD in anti MDA-5 positive DM patients

Dermatomyositis – Diagnosis

- CK – normal to several 1000’s
- EMG—confirm a myopathic process
 - Excludes nerve conditions with proximal muscle weakness—ALS, SMA, CIDP
 - NCS are normal; needle EMG shows myopathy with active muscle damage; *please indicate to EMGer that you are worried about a myopathy*
- Auto-antibodies

<table>
<thead>
<tr>
<th>Myositis-specific Ab</th>
<th>Characteristic Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Mi-2 (classic)</td>
<td>Classic skin rash; moderate weakness; favorable response to tx; low malignancy risk</td>
</tr>
<tr>
<td>Anti TIF-1γ</td>
<td>Increased risk of malignancy (adult); severe skin rash; hypopigmented red on white patches; variable weakness</td>
</tr>
<tr>
<td>Anti NXP-2</td>
<td>Increased risk of malignancy (adult); classic skin rash; mild to moderate weakness; subcutaneous calcifications; edema</td>
</tr>
<tr>
<td>Anti MDA-5</td>
<td>Severe skin rash; no/minimal muscle involvement; skin ulceration; rapidly progressive ILD; poor prognosis</td>
</tr>
<tr>
<td>Anti SAE</td>
<td>Classic rash; mild muscle involvement; dysphagia</td>
</tr>
</tbody>
</table>
Dermatomyositis – Diagnosis

- Tissue is usually necessary for definitive diagnosis.
- Usually done on muscle or skin.
- Muscle biopsy with perifascicular atrophy (we don’t know why)
 - Pathognomonic
- Mild inflammation cells (CD4 T cells, plasmacytoid dendritic cells) are located around the muscle cells and around vessels
- Reduced capillary density
- Ischemia

Muscle biopsy showing small, atrophic muscle fibers in a perifascicular (edge of fascicle) distribution (arrows).

Dermatomyositis – Diagnosis

- The newest diagnosis tool
- Do MRI with STIR without contrast
 - MRI of both thighs (high yield)
 - Hyperintensity on T1 & STIR
- Visualizes muscle edema (active disease), muscle atrophy (chronic), fatty replacement (chronic)
- Done if biopsy contraindicated (on anticoagulation) or not diagnostic
- Presence of subcutaneous edema, fasciitis
 - Specific for DM compared to other immune myositis
- Can help in selection of biopsy site
- Can be positive in presumed amyopathic DM

MRI of thighs. A: STIR-Subcutaneous hyperintensity throughout (red)
B: Axial image of thigh; marked atrophy of thigh (blue)
C: Subcutaneous calcification in posterior thigh (hypointensity; yellow)

Immune-Mediated: Antisynthetase Syndrome

- Autoimmune condition with myositis + ILD
- Associated with autoantibodies to aminoacyl transfer RNA (tRNA) synthetases
 - Enzyme that catalyzes binding of amino acid to their cognate tRNA
Antisynthetase Syndrome

Pathology

- Similar to DM—perifascicular atrophy, microvascular abnormalities

Autoantibodies

<table>
<thead>
<tr>
<th>Myositis-specific Ab</th>
<th>Characteristic Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti Jo-1</td>
<td>Muscle involvement common (90% of pts); progressive ILD; may have mild skin rash or mechanic’s hand</td>
</tr>
<tr>
<td>Anti PL-7</td>
<td>Severe ILD; may have moderate muscle involvement</td>
</tr>
<tr>
<td>Anti PL-12</td>
<td>Severe ILD (50% of pts), may have mild or no muscle involvement</td>
</tr>
<tr>
<td>Anti glycyl-transfer RNA synthetase (EJ), anti OJ, anti KS</td>
<td>High association with ILD</td>
</tr>
<tr>
<td>Anti Zo, Anti Ha</td>
<td>Rare; possible ILD</td>
</tr>
</tbody>
</table>
Antisynthetase Syndrome - Clinical

• May have all or some of the following:
 • Inflammatory myopathy
 • Not in all patients
 • Most common in anti Jo-1
 • ILD
 • Arthritis
 • Raynaud syndrome
 • Fever
 • Mechanic’s hands
 • Rash similar to DM
• CK typically in 1000’s
 (average 4500 IU/L)

B: ILD in a anti Jo-1 positive DM pt.
Immune-Mediated Necrotizing Myopathy

- Severe proximal muscle weakness
- Rare extra-muscular involvement
- CKs are very high; several 1000’s (b/c of necrosis)

Autoantibodies

<table>
<thead>
<tr>
<th>Myositis-specific Ab</th>
<th>Characteristic Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase (2/3rd of cases)</td>
<td>Severe muscle involvement; prior statin use (30% are statin naïve); no skin or lung involvement</td>
</tr>
<tr>
<td>Anti signal recognition particle (SRP) (5% of cases)</td>
<td>Severe muscle involvement; rare ILD; no skin involvement</td>
</tr>
<tr>
<td>Antibody-negative immune mediated necrotizing myopathy</td>
<td>Increased risk of malignancy (screen annually with CT chest, abdomen, pelvis, whole body PET, routine screens x 3 y)</td>
</tr>
</tbody>
</table>

Pathology

- Muscle biopsy shows necrosis and very minimal inflammatory cells
Diagnostics

- Thorough clinical exam, check CK, assess for other organ involvement (CBC, CMP), EMG, autoantibodies
 - 2nd tier diagnostics: CT chest, MRI of muscles
 - Muscle MRI – T1 hyperintensity and hyperintensity on STIR indicative of intramuscular edema; no fascial edema (unlike DM)
 - Anti SRP and anti HMG-CoA Ab levels, CK, and necrosis on muscle biopsy are highly correlated with disease activity (likely pathogenic antibodies)
 - Can trend CK (most practical) to measure response to treatment
HMG-CoA Reductase Necrotizing Myopathy

- Comprises ~2/3rd of immune mediated necrotizing myopathy cases
- 2/3rd of cases associated with statin use
 - 1/3rd are statin naïve (autoimmune) – more common in younger pts; can occur in a pediatric patient (teen)
- No clear correlation with type of statin or dose
- Length of statin exposure prior to developing symptoms range from weeks to years
- Slowly progressive myopathy
HMG-CoA Reductase Necrotizing myopathy

Pathogenesis

• Not completely understood
• HMG-CoA reductase expression is upregulated by statin exposure
• Immunogenetic risk factor:
 • HLA DRB1*11:01 is found in 70% of pts (10% of general pop)
 • May play a role in presenting HMG-CoA reductase peptides with exposure to statins that trigger immune response
• Regenerating muscle have ↑ HMG-CoA reductase protein
• Aberrant HMG-CoA reductase protein processing occurs
• Tolerance to HMG-CoA reductase is broken, the regenerating myofibers will serve as a source of autoantigen even after d/c of statin
• Ab are not on surface of myofiber; could be cross-reacting to surface Ag

HMG-CoA Reductase Necrotizing myopathy

- Incidence: 2 per million/yr
- Weakness, myalgias
 - No improvement after discontinuation of statin
- Very high CKs; mean 10,000 IU/L
- Send HMG-CoA reductase antibody assay
 - sensitivity of 94.4%, specificity 99.3%
 - Highly correlates with disease activity
- No association with cancer
- EMG
- Muscle biopsy
- Treatment:
 - Immediately stop statin (high risk for MI/stroke)
 - Prednisone
 - Methotrexate, azathioprine
 - IVIG
Anti SRP Necrotizing Myopathy

- Rare, 5% of myositis cases
- Severe muscle weakness, dysphagia
 - No ILD, no rash
- Very high CKs; several 1000’s
- No association with cancer
- High incidence of HLA DRB1*08:03
Overlap Myositis

- Autoimmune myopathy associated with a well-defined connective tissue disorders
 - SLE, Sjögren syndrome, RA, systemic sclerosis
- Proximal muscle weakness

Nonspecific Autoantibodies

<table>
<thead>
<tr>
<th>Myositis-specific Ab</th>
<th>Characteristic Clinical Features</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anti R052/TRIM21</td>
<td>R052 is most common (25% of overlap myositis cases)</td>
</tr>
<tr>
<td>Anti PMScI</td>
<td>Associated with scleroderma; lung and esophageal involvement</td>
</tr>
<tr>
<td>Anti Ku</td>
<td>Associated w/joint involvement, Raynaud syndrome, ILD</td>
</tr>
<tr>
<td>Ribonucleoprotein (U1 through U5 RNP)</td>
<td>Found in SLE, scleroderma</td>
</tr>
</tbody>
</table>
Polymyositis

- Very rare entity
- CD8 T cells on muscle biopsy
- Now a diagnosis of exclusion
Immune Mediated Myositis Overview

<table>
<thead>
<tr>
<th>Antibody</th>
<th>Muscle</th>
<th>Skin</th>
<th>Lung</th>
<th>Cancer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dermatomyositis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mi-2</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TIF-1γ</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>NXP-2</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>MDA-5</td>
<td></td>
<td>X</td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Anti-synthetase</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Jo-1</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PL-7</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>PL-12</td>
<td></td>
<td></td>
<td></td>
<td>X</td>
</tr>
<tr>
<td>Necrotizing</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SRP</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>HMG-CoA R</td>
<td>X</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Antibody negative</td>
<td>X</td>
<td></td>
<td></td>
<td>X</td>
</tr>
</tbody>
</table>
Treatment for all Immune mediated myositis

• Start prednisone (after biopsy)
 • Try not to exceed 40mg/d (absolute value)
 • May need to maintain this dose for 6 months; until normal strength
 • Can do 60mg/d for 2 weeks, but rapidly wean down to 40mg/d
 • Why?
 • To avoid steroid-induced myopathy

• Almost always need a steroid sparing agent
 • Methotrexate
 • Azathioprine
 • Mycophenolate mofetil

• May need a second immune agent
 • IVIG

• Stop statin for HMG-CoA reductase necrotizing myopathy
Try not to exceed 40mg/d

Mild weakness

- Prednisone 0.75–1.0 mg/kg/d (not >40–60 mg/d)
- Response after 2 months?
 - Yes
 - After improvement/stabilization in strength (2 to 4 months)
 - Taper prednisone by 20% every 2 to 3 months to lowest effective dose; gradual taper of other agents every 3 to 4 months
 - No

Moderate to severe weakness

- Prednisone 1 mg/kg/d (not >60–80 mg/d) +
 - Methotrexate oral or subcutaneously (start 10 mg/wk, up to 20–25 mg/wk)
 - Azathioprine (start 50 mg/d, increase up to 2.0–2.5 mg/kg/d)
 - If severe weakness, consider also starting with IV Ig (2 g/kg over 5 days loading dose followed 1 month later by 1 g/kg monthly for 3 months)
- Response?
 - Yes
 - For moderate disease, options include IV Ig, mycophenolate mofetil, cyclosporine, tacrolimus
 - For severe disease, options include rituximab, IV Ig, IV solumedrol, cyclophosphamide
 - No
 - Immunosuppressive combination agents, investigational agents, clinical trials

Do 60mg/d x 2 weeks max, then decrease to 40mg/d

Usually takes 6 months

Treatment for all Immune mediated myositis

- **Cancer screening**
 - Most malignancy occurs within first 3 years of myositis onset
 - CT chest, abdomen, pelvis
 - Age-appropriate cancer screen (mammo, colonoscopy, gynecological)
 - Consider PET
 - High risk subtypes should be screened ~annually
Neurodegenerative Inclusion Body Myositis (IBM)

- Neurodegenerative disease of muscle
- Most common adult onset myopathy; underdiagnosed
- Clinical:
 - Falls due to quad weakness
 - Finger flexion weakness (grip)
 - Dysphagia (late finding)
- Onset at ~ age 50
- M>F
- Risk of: Aspiration pneumonia, falls, restrictive lung disease
- High association with coexisting rheum disease like Sjögren
- Associated with HLA DRB1*03:01

IBM – Clinical Pathology

- Autoantibody: anti-5’ nucleotidase cytosolic IA (NT5C1A)
 - Used in diagnosis
 - Positive in 40-60% of sporadic IBM; not specific (positive in Sjögren, SLE)
 - More common in ♀; more severe phenotype (poorer prognosis) with reduced FVC, ↑mortality and dysphagia

- Muscle biopsy – needed for diagnosis
- Not responsive to immune drugs
- No treatment